Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Lancet Diabetes Endocrinol ; 10(8): 571-580, 2022 08.
Article in English | MEDLINE | ID: covidwho-1915201

ABSTRACT

BACKGROUND: A high BMI has been associated with a reduced immune response to vaccination against influenza. We aimed to investigate the association between BMI and COVID-19 vaccine uptake, vaccine effectiveness, and risk of severe COVID-19 outcomes after vaccination by using a large, representative population-based cohort from England. METHODS: In this population-based cohort study, we used the QResearch database of general practice records and included patients aged 18 years or older who were registered at a practice that was part of the database in England between Dec 8, 2020 (date of the first vaccination in the UK), to Nov 17, 2021, with available data on BMI. Uptake was calculated as the proportion of people with zero, one, two, or three doses of the vaccine across BMI categories. Effectiveness was assessed through a nested matched case-control design to estimate odds ratios (OR) for severe COVID-19 outcomes (ie, admission to hospital or death) in people who had been vaccinated versus those who had not, considering vaccine dose and time periods since vaccination. Vaccine effectiveness against infection with SARS-CoV-2 was also investigated. Multivariable Cox proportional hazard models estimated the risk of severe COVID-19 outcomes associated with BMI (reference BMI 23 kg/m2) after vaccination. FINDINGS: Among 9 171 524 participants (mean age 52 [SD 19] years; BMI 26·7 [5·6] kg/m2), 566 461 tested positive for SARS-CoV-2 during follow-up, of whom 32 808 were admitted to hospital and 14 389 died. Of the total study sample, 19·2% (1 758 689) were unvaccinated, 3·1% (287 246) had one vaccine dose, 52·6% (4 828 327) had two doses, and 25·0% (2 297 262) had three doses. In people aged 40 years and older, uptake of two or three vaccine doses was more than 80% among people with overweight or obesity, which was slightly lower in people with underweight (70-83%). Although significant heterogeneity was found across BMI groups, protection against severe COVID-19 disease (comparing people who were vaccinated vs those who were not) was high after 14 days or more from the second dose for hospital admission (underweight: OR 0·51 [95% CI 0·41-0·63]; healthy weight: 0·34 [0·32-0·36]; overweight: 0·32 [0·30-0·34]; and obesity: 0·32 [0·30-0·34]) and death (underweight: 0·60 [0·36-0·98]; healthy weight: 0·39 [0·33-0·47]; overweight: 0·30 [0·25-0·35]; and obesity: 0·26 [0·22-0·30]). In the vaccinated cohort, there were significant linear associations between BMI and COVID-19 hospitalisation and death after the first dose, and J-shaped associations after the second dose. INTERPRETATION: Using BMI categories, there is evidence of protection against severe COVID-19 in people with overweight or obesity who have been vaccinated, which was of a similar magnitude to that of people of healthy weight. Vaccine effectiveness was slightly lower in people with underweight, in whom vaccine uptake was also the lowest for all ages. In the vaccinated cohort, there were increased risks of severe COVID-19 outcomes for people with underweight or obesity compared with the vaccinated population with a healthy weight. These results suggest the need for targeted efforts to increase uptake in people with low BMI (<18·5 kg/m2), in whom uptake is lower and vaccine effectiveness seems to be reduced. Strategies to achieve and maintain a healthy weight should be prioritised at the population level, which could help reduce the burden of COVID-19 disease. FUNDING: UK Research and Innovation and National Institute for Health Research Oxford Biomedical Research Centre.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Body Mass Index , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Cohort Studies , England/epidemiology , Humans , Middle Aged , Obesity/complications , Obesity/epidemiology , Overweight/complications , Overweight/epidemiology , SARS-CoV-2 , Thinness , Vaccination , Vaccine Efficacy
2.
Br J Gen Pract ; 72(718): 237-238, 2022 05.
Article in English | MEDLINE | ID: covidwho-1862957
3.
Int J Obes (Lond) ; 46(5): 943-950, 2022 05.
Article in English | MEDLINE | ID: covidwho-1815510

ABSTRACT

BACKGROUND: Higher body mass index (BMI) and metabolic consequences of excess weight are associated with increased risk of severe COVID-19, though their mediating pathway is unclear. METHODS: A prospective cohort study included 435,504 UK Biobank participants. A two-sample Mendelian randomisation (MR) study used the COVID-19 Host Genetics Initiative in 1.6 million participants. We examined associations of total adiposity, body composition, fat distribution and metabolic consequences of excess weight, particularly type 2 diabetes, with incidence and severity of COVID-19, assessed by test positivity, hospital admission, intensive care unit (ICU) admission and death. RESULTS: BMI and body fat were associated with COVID-19 in the observational and MR analyses but muscle mass was not. The observational study suggested the association with central fat distribution was stronger than for BMI, but there was little evidence from the MR analyses than this was causal. There was evidence that strong associations of metabolic consequences with COVID-19 outcomes in observational but not MR analyses. Type 2 diabetes was strongly associated with COVID-19 in observational but not MR analyses. In adjusted models, the observational analysis showed that the association of BMI with COVID-19 diminished, while central fat distribution and metabolic consequences of excess weight remained strongly associated. In contrast, MR showed the reverse, with only BMI retaining a direct effect on COVID-19. CONCLUSIONS: Excess total adiposity is probably casually associated with severe COVID-19. Mendelian randomisation data do not support causality for the observed associations of central fat distribution or metabolic consequences of excess adiposity with COVID-19.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Adipose Tissue , Adiposity/genetics , Body Composition/genetics , Body Mass Index , COVID-19/complications , COVID-19/epidemiology , COVID-19/genetics , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/genetics , Humans , Obesity/complications , Obesity/epidemiology , Obesity/genetics , Prospective Studies
4.
Cochrane Database Syst Rev ; 10: CD006219, 2021 10 06.
Article in English | MEDLINE | ID: covidwho-1813435

ABSTRACT

BACKGROUND: Most people who stop smoking gain weight. This can discourage some people from making a quit attempt and risks offsetting some, but not all, of the health advantages of quitting. Interventions to prevent weight gain could improve health outcomes, but there is a concern that they may undermine quitting. OBJECTIVES: To systematically review the effects of: (1) interventions targeting post-cessation weight gain on weight change and smoking cessation (referred to as 'Part 1') and (2) interventions designed to aid smoking cessation that plausibly affect post-cessation weight gain (referred to as 'Part 2'). SEARCH METHODS: Part 1 - We searched the Cochrane Tobacco Addiction Group's Specialized Register and CENTRAL; latest search 16 October 2020. Part 2 - We searched included studies in the following 'parent' Cochrane reviews: nicotine replacement therapy (NRT), antidepressants, nicotine receptor partial agonists, e-cigarettes, and exercise interventions for smoking cessation published in Issue 10, 2020 of the Cochrane Library. We updated register searches for the review of nicotine receptor partial agonists. SELECTION CRITERIA: Part 1 - trials of interventions that targeted post-cessation weight gain and had measured weight at any follow-up point or smoking cessation, or both, six or more months after quit day. Part 2 - trials included in the selected parent Cochrane reviews reporting weight change at any time point. DATA COLLECTION AND ANALYSIS: Screening and data extraction followed standard Cochrane methods. Change in weight was expressed as difference in weight change from baseline to follow-up between trial arms and was reported only in people abstinent from smoking. Abstinence from smoking was expressed as a risk ratio (RR). Where appropriate, we performed meta-analysis using the inverse variance method for weight, and Mantel-Haenszel method for smoking. MAIN RESULTS: Part 1: We include 37 completed studies; 21 are new to this update. We judged five studies to be at low risk of bias, 17 to be at unclear risk and the remainder at high risk.  An intermittent very low calorie diet (VLCD) comprising full meal replacement provided free of charge and accompanied by intensive dietitian support significantly reduced weight gain at end of treatment compared with education on how to avoid weight gain (mean difference (MD) -3.70 kg, 95% confidence interval (CI) -4.82 to -2.58; 1 study, 121 participants), but there was no evidence of benefit at 12 months (MD -1.30 kg, 95% CI -3.49 to 0.89; 1 study, 62 participants). The VLCD increased the chances of abstinence at 12 months (RR 1.73, 95% CI 1.10 to 2.73; 1 study, 287 participants). However, a second study  found that no-one completed the VLCD intervention or achieved abstinence. Interventions aimed at increasing acceptance of weight gain reported mixed effects at end of treatment, 6 months and 12 months with confidence intervals including both increases and decreases in weight gain compared with no advice or health education. Due to high heterogeneity, we did not combine the data. These interventions increased quit rates at 6 months (RR 1.42, 95% CI 1.03 to 1.96; 4 studies, 619 participants; I2 = 21%), but there was no evidence at 12 months (RR 1.25, 95% CI 0.76 to 2.06; 2 studies, 496 participants; I2 = 26%). Some pharmacological interventions tested for limiting post-cessation weight gain (PCWG) reduced weight gain at the end of treatment (dexfenfluramine, phenylpropanolamine, naltrexone). The effects of ephedrine and caffeine combined, lorcaserin, and chromium were too imprecise to give useful estimates of treatment effects. There was very low-certainty evidence that personalized weight management support reduced weight gain at end of treatment (MD -1.11 kg, 95% CI -1.93 to -0.29; 3 studies, 121 participants; I2 = 0%), but no evidence in the longer-term 12 months (MD -0.44 kg, 95% CI -2.34 to 1.46; 4 studies, 530 participants; I2 = 41%). There was low to very low-certainty evidence that detailed weight management education without personalized assessment, planning and feedback did not reduce weight gain and may have reduced smoking cessation rates (12 months: MD -0.21 kg, 95% CI -2.28 to 1.86; 2 studies, 61 participants; I2 = 0%; RR for smoking cessation 0.66, 95% CI 0.48 to 0.90; 2 studies, 522 participants; I2 = 0%). Part 2: We include 83 completed studies, 27 of which are new to this update. There was low certainty that exercise interventions led to minimal or no weight reduction compared with standard care at end of treatment (MD -0.25 kg, 95% CI -0.78 to 0.29; 4 studies, 404 participants; I2 = 0%). However, weight was reduced at 12 months (MD -2.07 kg, 95% CI -3.78 to -0.36; 3 studies, 182 participants; I2 = 0%). Both bupropion and fluoxetine limited weight gain at end of treatment (bupropion MD -1.01 kg, 95% CI -1.35 to -0.67; 10 studies, 1098 participants; I2 = 3%); (fluoxetine MD -1.01 kg, 95% CI -1.49 to -0.53; 2 studies, 144 participants; I2 = 38%; low- and very low-certainty evidence, respectively). There was no evidence of benefit at 12 months for bupropion, but estimates were imprecise (bupropion MD -0.26 kg, 95% CI -1.31 to 0.78; 7 studies, 471 participants; I2 = 0%). No studies of fluoxetine provided data at 12 months. There was moderate-certainty that NRT reduced weight at end of treatment (MD -0.52 kg, 95% CI -0.99 to -0.05; 21 studies, 2784 participants; I2 = 81%) and moderate-certainty that the effect may be similar at 12 months (MD -0.37 kg, 95% CI -0.86 to 0.11; 17 studies, 1463 participants; I2 = 0%), although the estimates are too imprecise to assess long-term benefit. There was mixed evidence of the effect of varenicline on weight, with high-certainty evidence that weight change was very modestly lower at the end of treatment (MD -0.23 kg, 95% CI -0.53 to 0.06; 14 studies, 2566 participants; I2 = 32%); a low-certainty estimate gave an imprecise estimate of higher weight at 12 months (MD 1.05 kg, 95% CI -0.58 to 2.69; 3 studies, 237 participants; I2 = 0%). AUTHORS' CONCLUSIONS: Overall, there is no intervention for which there is moderate certainty of a clinically useful effect on long-term weight gain. There is also no moderate- or high-certainty evidence that interventions designed to limit weight gain reduce the chances of people achieving abstinence from smoking.


Subject(s)
Electronic Nicotine Delivery Systems , Smoking Cessation , Humans , Nicotine , Tobacco Use Cessation Devices , Weight Gain
5.
Int J Epidemiol ; 51(4): 1062-1072, 2022 08 10.
Article in English | MEDLINE | ID: covidwho-1706511

ABSTRACT

BACKGROUND: Smoking is a risk factor for most respiratory infections, but it may protect against SARS-CoV-2 infection. The objective was to assess whether smoking and e-cigarette use were associated with severe COVID-19. METHODS: This cohort ran from 24 January 2020 until 30 April 2020 at the height of the first wave of the SARS-CoV-2 epidemic in England. It comprised 7 869 534 people representative of the population of England with smoking status, demographic factors and diseases recorded by general practitioners in the medical records, which were linked to hospital and death data. The outcomes were COVID-19-associated hospitalization, intensive care unit (ICU) admission and death. The associations between smoking and the outcomes were assessed with Cox proportional hazards models, with sequential adjustment for confounding variables and indirect causal factors (body mass index and smoking-related disease). RESULTS: Compared with never smokers, people currently smoking were at lower risk of COVID-19 hospitalization, adjusted hazard ratios (HRs) were 0.64 (95% confidence intervals 0.60 to 0.69) for <10 cigarettes/day, 0.49 (0.41 to 0.59) for 10-19 cigarettes/day, and 0.61 (0.49 to 0.74) for ≥20 cigarettes/day. For ICU admission, the corresponding HRs were 0.31 (0.24 to 0.40), 0.15 (0.06 to 0.36), and 0.35 (0.17 to 0.74) and death were: 0.79 (0.70 to 0.89), 0.66 (0.48 to 0.90), and 0.77 (0.54 to 1.09) respectively. Former smokers were at higher risk of severe COVID-19: HRs: 1.07 (1.03 to 1.11) for hospitalization, 1.17 (1.04 to 1.31) for ICU admission, and 1.17 (1.10 to 1.24) for death. All-cause mortality was higher for current smoking than never smoking, HR 1.42 (1.36 to 1.48). Among e-cigarette users, the adjusted HR for e-cigarette use and hospitalization with COVID-19 was 1.06 (0.88 to 1.28), for ICU admission was 1.04 (0.57 to 1.89, and for death was 1.12 (0.81 to 1.55). CONCLUSIONS: Current smoking was associated with a reduced risk of severe COVID-19 but the association with e-cigarette use was unclear. All-cause mortality remained higher despite this possible reduction in death from COVID-19 during an epidemic of SARS-CoV-2. Findings support investigating possible protective mechanisms of smoking for SARS-CoV-2 infection, including the ongoing trials of nicotine to treat COVID-19.


Subject(s)
COVID-19 , Electronic Nicotine Delivery Systems , Vaping , COVID-19/epidemiology , Cohort Studies , Hospitalization , Humans , SARS-CoV-2 , Smoking/epidemiology , Vaping/epidemiology
6.
PLoS One ; 17(2): e0263228, 2022.
Article in English | MEDLINE | ID: covidwho-1674010

ABSTRACT

OBJECTIVES: The aim was to investigate the impact of a group-based weight management programme on symptoms of depression and anxiety compared with self-help in a randomised controlled trial (RCT). METHOD: People with overweight (Body Mass Index [BMI]≥28kg/m2) were randomly allocated self-help (n = 211) or a group-based weight management programme for 12 weeks (n = 528) or 52 weeks (n = 528) between 18/10/2012 and 10/02/2014. Symptoms were assessed using the Hospital Anxiety and Depression Scale, at baseline, 3, 12 and 24 months. Linear regression modelling examined changes in Hospital Anxiety and Depression Scale between trial arms. RESULTS: At 3 months, there was a -0.6 point difference (95% confidence interval [CI], -1.1, -0.1) in depression score and -0.1 difference (95% CI, -0.7, 0.4) in anxiety score between group-based weight management programme and self-help. At subsequent time points there was no consistent evidence of a difference in depression or anxiety scores between trial arms. There was no evidence that depression or anxiety worsened at any time point. CONCLUSIONS: There was no evidence of harm to depression or anxiety symptoms as a result of attending a group-based weight loss programme. There was a transient reduction in symptoms of depression, but not anxiety, compared to self-help. This effect equates to less than 1 point out of 21 on the Hospital Anxiety and Depression Scale and is not clinically significant.


Subject(s)
Anxiety Disorders/prevention & control , Depression/prevention & control , Quality of Life , Self-Management/methods , Weight Loss , Weight Reduction Programs/statistics & numerical data , Anxiety Disorders/epidemiology , Case-Control Studies , Cost-Benefit Analysis , Depression/epidemiology , Female , Humans , Male , Middle Aged , Quality-Adjusted Life Years , United Kingdom
7.
Thorax ; 77(1): 65-73, 2022 01.
Article in English | MEDLINE | ID: covidwho-1440837

ABSTRACT

BACKGROUND: Conflicting evidence has emerged regarding the relevance of smoking on risk of COVID-19 and its severity. METHODS: We undertook large-scale observational and Mendelian randomisation (MR) analyses using UK Biobank. Most recent smoking status was determined from primary care records (70.8%) and UK Biobank questionnaire data (29.2%). COVID-19 outcomes were derived from Public Health England SARS-CoV-2 testing data, hospital admissions data, and death certificates (until 18 August 2020). Logistic regression was used to estimate associations between smoking status and confirmed SARS-CoV-2 infection, COVID-19-related hospitalisation, and COVID-19-related death. Inverse variance-weighted MR analyses using established genetic instruments for smoking initiation and smoking heaviness were undertaken (reported per SD increase). RESULTS: There were 421 469 eligible participants, 1649 confirmed infections, 968 COVID-19-related hospitalisations and 444 COVID-19-related deaths. Compared with never-smokers, current smokers had higher risks of hospitalisation (OR 1.80, 95% CI 1.26 to 2.29) and mortality (smoking 1-9/day: OR 2.14, 95% CI 0.87 to 5.24; 10-19/day: OR 5.91, 95% CI 3.66 to 9.54; 20+/day: OR 6.11, 95% CI 3.59 to 10.42). In MR analyses of 281 105 White British participants, genetically predicted propensity to initiate smoking was associated with higher risks of infection (OR 1.45, 95% CI 1.10 to 1.91) and hospitalisation (OR 1.60, 95% CI 1.13 to 2.27). Genetically predicted higher number of cigarettes smoked per day was associated with higher risks of all outcomes (infection OR 2.51, 95% CI 1.20 to 5.24; hospitalisation OR 5.08, 95% CI 2.04 to 12.66; and death OR 10.02, 95% CI 2.53 to 39.72). INTERPRETATION: Congruent results from two analytical approaches support a causal effect of smoking on risk of severe COVID-19.


Subject(s)
COVID-19 , Biological Specimen Banks , COVID-19 Testing , England , Humans , SARS-CoV-2 , Smoking/adverse effects
8.
Lancet Respir Med ; 9(8): 909-923, 2021 08.
Article in English | MEDLINE | ID: covidwho-1411740

ABSTRACT

BACKGROUND: Previous studies suggested that the prevalence of chronic respiratory disease in patients hospitalised with COVID-19 was lower than its prevalence in the general population. The aim of this study was to assess whether chronic lung disease or use of inhaled corticosteroids (ICS) affects the risk of contracting severe COVID-19. METHODS: In this population cohort study, records from 1205 general practices in England that contribute to the QResearch database were linked to Public Health England's database of SARS-CoV-2 testing and English hospital admissions, intensive care unit (ICU) admissions, and deaths for COVID-19. All patients aged 20 years and older who were registered with one of the 1205 general practices on Jan 24, 2020, were included in this study. With Cox regression, we examined the risks of COVID-19-related hospitalisation, admission to ICU, and death in relation to respiratory disease and use of ICS, adjusting for demographic and socioeconomic status and comorbidities associated with severe COVID-19. FINDINGS: Between Jan 24 and April 30, 2020, 8 256 161 people were included in the cohort and observed, of whom 14 479 (0·2%) were admitted to hospital with COVID-19, 1542 (<0·1%) were admitted to ICU, and 5956 (0·1%) died. People with some respiratory diseases were at an increased risk of hospitalisation (chronic obstructive pulmonary disease [COPD] hazard ratio [HR] 1·54 [95% CI 1·45-1·63], asthma 1·18 [1·13-1·24], severe asthma 1·29 [1·22-1·37; people on three or more current asthma medications], bronchiectasis 1·34 [1·20-1·50], sarcoidosis 1·36 [1·10-1·68], extrinsic allergic alveolitis 1·35 [0·82-2·21], idiopathic pulmonary fibrosis 1·59 [1·30-1·95], other interstitial lung disease 1·66 [1·30-2·12], and lung cancer 2·24 [1·89-2·65]) and death (COPD 1·54 [1·42-1·67], asthma 0·99 [0·91-1·07], severe asthma 1·08 [0·98-1·19], bronchiectasis 1·12 [0·94-1·33], sarcoidosis 1·41 [0·99-1·99), extrinsic allergic alveolitis 1·56 [0·78-3·13], idiopathic pulmonary fibrosis 1·47 [1·12-1·92], other interstitial lung disease 2·05 [1·49-2·81], and lung cancer 1·77 [1·37-2·29]) due to COVID-19 compared with those without these diseases. Admission to ICU was rare, but the HR for people with asthma was 1·08 (0·93-1·25) and severe asthma was 1·30 (1·08-1·58). In a post-hoc analysis, relative risks of severe COVID-19 in people with respiratory disease were similar before and after shielding was introduced on March 23, 2020. In another post-hoc analysis, people with two or more prescriptions for ICS in the 150 days before study start were at a slightly higher risk of severe COVID-19 compared with all other individuals (ie, no or one ICS prescription): HR 1·13 (1·03-1·23) for hospitalisation, 1·63 (1·18-2·24) for ICU admission, and 1·15 (1·01-1·31) for death. INTERPRETATION: The risk of severe COVID-19 in people with asthma is relatively small. People with COPD and interstitial lung disease appear to have a modestly increased risk of severe disease, but their risk of death from COVID-19 at the height of the epidemic was mostly far lower than the ordinary risk of death from any cause. Use of inhaled steroids might be associated with a modestly increased risk of severe COVID-19. FUNDING: National Institute for Health Research Oxford Biomedical Research Centre and the Wellcome Trust.


Subject(s)
Adrenal Cortex Hormones , COVID-19 , Pulmonary Disease, Chronic Obstructive , Administration, Inhalation , Adrenal Cortex Hormones/administration & dosage , Adrenal Cortex Hormones/adverse effects , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/physiopathology , COVID-19 Testing , Comorbidity , England/epidemiology , Female , Hospitalization/statistics & numerical data , Humans , Intensive Care Units/statistics & numerical data , Male , Middle Aged , Mortality , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/epidemiology , Risk Assessment , SARS-CoV-2/isolation & purification , Social Class
9.
Lancet Diabetes Endocrinol ; 9(6): 350-359, 2021 06.
Article in English | MEDLINE | ID: covidwho-1208494

ABSTRACT

BACKGROUND: Obesity is a major risk factor for adverse outcomes after infection with SARS-CoV-2. We aimed to examine this association, including interactions with demographic and behavioural characteristics, type 2 diabetes, and other health conditions. METHODS: In this prospective, community-based, cohort study, we used de-identified patient-level data from the QResearch database of general practices in England, UK. We extracted data for patients aged 20 years and older who were registered at a practice eligible for inclusion in the QResearch database between Jan 24, 2020 (date of the first recorded infection in the UK) and April 30, 2020, and with available data on BMI. Data extracted included demographic, clinical, clinical values linked with Public Health England's database of positive SARS-CoV-2 test results, and death certificates from the Office of National Statistics. Outcomes, as a proxy measure of severe COVID-19, were admission to hospital, admission to an intensive care unit (ICU), and death due to COVID-19. We used Cox proportional hazard models to estimate the risk of severe COVID-19, sequentially adjusting for demographic characteristics, behavioural factors, and comorbidities. FINDINGS: Among 6 910 695 eligible individuals (mean BMI 26·78 kg/m2 [SD 5·59]), 13 503 (0·20%) were admitted to hospital, 1601 (0·02%) to an ICU, and 5479 (0·08%) died after a positive test for SARS-CoV-2. We found J-shaped associations between BMI and admission to hospital due to COVID-19 (adjusted hazard ratio [HR] per kg/m2 from the nadir at BMI of 23 kg/m2 of 1·05 [95% CI 1·05-1·05]) and death (1·04 [1·04-1·05]), and a linear association across the whole BMI range with ICU admission (1·10 [1·09-1·10]). We found a significant interaction between BMI and age and ethnicity, with higher HR per kg/m2 above BMI 23 kg/m2 for younger people (adjusted HR per kg/m2 above BMI 23 kg/m2 for hospital admission 1·09 [95% CI 1·08-1·10] in 20-39 years age group vs 80-100 years group 1·01 [1·00-1·02]) and Black people than White people (1·07 [1·06-1·08] vs 1·04 [1·04-1·05]). The risk of admission to hospital and ICU due to COVID-19 associated with unit increase in BMI was slightly lower in people with type 2 diabetes, hypertension, and cardiovascular disease than in those without these morbidities. INTERPRETATION: At a BMI of more than 23 kg/m2, we found a linear increase in risk of severe COVID-19 leading to admission to hospital and death, and a linear increase in admission to an ICU across the whole BMI range, which is not attributable to excess risks of related diseases. The relative risk due to increasing BMI is particularly notable people younger than 40 years and of Black ethnicity. FUNDING: NIHR Oxford Biomedical Research Centre.


Subject(s)
Body Mass Index , COVID-19/epidemiology , Diabetes Mellitus, Type 2/epidemiology , Independent Living/trends , Severity of Illness Index , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , Cohort Studies , Databases, Factual , Diabetes Mellitus, Type 2/diagnosis , England/epidemiology , Female , Follow-Up Studies , Hospitalization/trends , Humans , Male , Middle Aged , Prospective Studies , Risk Factors , Young Adult
10.
Heart ; 106(19): 1503-1511, 2020 10.
Article in English | MEDLINE | ID: covidwho-690585

ABSTRACT

BACKGROUND: There is uncertainty about the associations of angiotensive enzyme (ACE) inhibitor and angiotensin receptor blocker (ARB) drugs with COVID-19 disease. We studied whether patients prescribed these drugs had altered risks of contracting severe COVID-19 disease and receiving associated intensive care unit (ICU) admission. METHODS: This was a prospective cohort study using routinely collected data from 1205 general practices in England with 8.28 million participants aged 20-99 years. We used Cox proportional hazards models to derive adjusted HRs for exposure to ACE inhibitor and ARB drugs adjusted for sociodemographic factors, concurrent medications and geographical region. The primary outcomes were: (a) COVID-19 RT-PCR diagnosed disease and (b) COVID-19 disease resulting in ICU care. FINDINGS: Of 19 486 patients who had COVID-19 disease, 1286 received ICU care. ACE inhibitors were associated with a significantly reduced risk of COVID-19 disease (adjusted HR 0.71, 95% CI 0.67 to 0.74) but no increased risk of ICU care (adjusted HR 0.89, 95% CI 0.75 to 1.06) after adjusting for a wide range of confounders. Adjusted HRs for ARBs were 0.63 (95% CI 0.59 to 0.67) for COVID-19 disease and 1.02 (95% CI 0.83 to 1.25) for ICU care.There were significant interactions between ethnicity and ACE inhibitors and ARBs for COVID-19 disease. The risk of COVID-19 disease associated with ACE inhibitors was higher in Caribbean (adjusted HR 1.05, 95% CI 0.87 to 1.28) and Black African (adjusted HR 1.31, 95% CI 1.08 to 1.59) groups than the white group (adjusted HR 0.66, 95% CI 0.63 to 0.70). A higher risk of COVID-19 with ARBs was seen for Black African (adjusted HR 1.24, 95% CI 0.99 to 1.58) than the white (adjusted HR 0.56, 95% CI 0.52 to 0.62) group. INTERPRETATION: ACE inhibitors and ARBs are associated with reduced risks of COVID-19 disease after adjusting for a wide range of variables. Neither ACE inhibitors nor ARBs are associated with significantly increased risks of receiving ICU care. Variations between different ethnic groups raise the possibility of ethnic-specific effects of ACE inhibitors/ARBs on COVID-19 disease susceptibility and severity which deserves further study.


Subject(s)
Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Betacoronavirus , Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Adult , Aged , Aged, 80 and over , COVID-19 , Cohort Studies , Coronavirus Infections/diagnosis , Critical Care/statistics & numerical data , England/epidemiology , Health Status , Hospitalization/statistics & numerical data , Humans , Middle Aged , Pandemics , Pneumonia, Viral/diagnosis , Risk Factors , SARS-CoV-2 , Socioeconomic Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL